Step of Proof: eq_int_eq_true_elim_sqequal
12,41
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
eq
int
eq
true
elim
sqequal
:
1.
i
:
2.
j
:
3. (
i
=
j
) ~ tt
4. (
i
=
j
) = tt
i
=
j
latex
by ((RW bool_to_propC (-1))
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat
C
3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
,
P
&
Q
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
Q
Lemmas
assert
of
eq
int
,
eqtt
to
assert
,
assert
wf
,
bool
wf
,
iff
transitivity
origin